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ABSTRACT

We address the problem of optimizing the perfor-
mance of lubricated devices by means of artificial
texturing. We consider a slider (or equivalently a
thrust bearing) and minimize the friction using op-
timization tools such as sensitivity analysis and ge-
netic algorithms. We show that textures that per-
form significantly better than the smooth (untex-
tured) one can be found, and that the optimized tex-
ture depends on the working conditions (load, ve-
locity). The GENESIS code that we used, with no
fine tuning of algorithmic variables, proved a valu-
able tool in the identification of improved shapes.

NOMENCLATURE

h = Local film thickness
hp = Depth of dimples

hmin = Minimum film thickness
Np = Number of dimples
Ng = Number of groups of dimples
ac = Square cell side
ap = Edgelength of the dimples
as = Half distance between dimples
k = Steepness parameter
x = coordinate
y = coordinate across film thickness
z = coordinate
p = Local pressure
U = Velocity
W = Load capacity

Wa = Applied load
F = Friction force

INTRODUCTION

Static and dynamic characteristics of lubricated
devices are very sensitive to geometrical changes
in the surfaces. The question then arises as to
what improvements can be brought to, for exam-
ple, a slider (which is also a model of a thrust bear-
ing) by texturing its surface by some of the newly
available methods such as indentation, chemical
etching, laser ablation, etc. A few recent works
have suggested that significant improvement can be
brought to lubricated devices by artificial texturing
[1, 2, 3].

This report addresses a preliminary study in this
direction that makes use of optimization tools such
as sensitivity analysis and genetic algorithms. We
consider the simple case of a slider loaded with a
static, vertical force. Only a texture on the static
surface is considered, so that the texture distribu-
tion does not move with respect to the load and the
problem has a time-independent steady state.

This simple case is important to understand the
basic mechanisms that could bring improvement to
the slider’s performance. We study square texture
cells with square microdimples, and optimize the
dimples’ size and depth.

The methodology is the solution of the
Reynolds’ equation by the Finite Element Method
coupled to a Newton-like method to find the equi-
librium position. At this position the relevant quan-
tities, such as friction force and minimal film thick-
ness, can be evaluated so as to drive the optimiza-
tion algorithm.

The conclusions of this preliminary assessment
are, basically, that optimization tools (either deter-
ministic or stochastic ones) can indeed find im-
proved designs of lubricated devices, even when
the design variables are in fact at the micro-scale
of the surface’s texture. We considered it impor-
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tant to assess evolutionary algorithms because in
some areas of tribology the current trend is towards
very sophisticated shapes that are not parameter-
ized variations of previous ones. This article re-
ports on a first step towards a systematic treatment
of “optimum tribological surfaces”, or “engineered
tribological surfaces”, by means of evolutionary al-
gorithms.

THEORY AND DEFINITIONS

Governing Equation

Figure 1: Schematic view of a slider.

The basic relation governing the slider lu-
brication problem is obtained by introducing
the Reynolds assumptions into the Navier-Stokes
equations. This relation (Reynolds equation) reads
(see the coordinate system in Fig. 1:


∂
∂x (h3 ∂p

∂x ) + ∂
∂z (h3 ∂p

∂z ) = ∂h
∂x in Ω

p = 0 in ΓD

∂p
∂n = 0 in ΓN

(1)
whereΩ is the integration domain and its boundary
is defined as∂Ω = ΓD ∪ΓN , beingΓD the Dirich-
let part of the boundary andΓN the Neumann one.

We consider two geometries. The first one is
periodic in the width direction, and thus models a
slider of infinite width, while the second one cor-
responds to a finite-width slider with atmospheric
pressure along the sides. The corresponding defi-
nitions are:

• Infinite Width

Ω = [0, 1]× (−ac

2 , ac

2 )

ΓN = {(x, z) | x ∈ [0, 1] , z = ±ac

2 }

• Finite Width

Ω = [0, 1]× [0, B]

ΓN = {(x, z) | x ∈ [0, 1], z = B
2 }

whereac is the square cell side andB is the slider
witdth in thez direction.

The thickness of the fluid film can be expressed
as:

h(x, z) = hU − hL + hp (2)

where hU is the height of the upper surface, in
which the load is applied,hL is the height of the
lower (textured) surface, but omitting the texture
contribution (see Fig. 1), andhp is the contribu-
tion to the fluid film thickness coming from the tex-
ture. In the case considered herehU is the follow-
ing quadratic function:

hL(x, z) = 3 x (2− x) (3)

The equilibrium positionhU of the upper sur-
face is found by Newton-Raphson iterations on the
equilibrium condition

W (hU )−Wa = 0 (4)

whereWa is the applied load, assumed along they
direction, and

W =
∫

Ω

p dΩ (5)

is the load capacity. The friction forceF in the
sliding direction (x) is calculated by integrating the
shear stress along the fluid film:

F =
∫

Ω

{ 1
h

+ 3 h
∂p

∂x
}dΩ (6)

Dimples

The dimples we consider are square and are ar-
ranged in a square pattern. They can be charac-
terized by few parameters, as shown in Fig. 2. The
edgelength of the square cell than contains the dim-
ple is denoted byac. The edgelength of the dimple
isap, so that the area fraction covered by dimples is
simply α = a2

p/a2
c . The third parameter that char-

acterizes a dimple ishpo. In cell coordinates(ξ, η)
the shape of the dimples is given by
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
hp = hpo tanh

[
k sin

(
π(ξ−as)

ap

)]
×

tanh
[
k sin

(
π(η−as)

ap

)]
if (ξ, η) ∈ Ωo

hp = 0 elsewhere in the cell
(7)

whereΩo = [as, as + ap] × [as, as + ap], as =
1
2 (ac − ap) andk is a “steepness parameter”.

Figure 2: Schematic view of the dimples and an
individual cell with its system of coordinates.

In the optimization process the domainΩ is di-
vided into regions. The dimples in each region are
considered a “group”. The shape parameters (ap,
hpo andk) are varied keeping their values uniform
for each group.

Numerical formulation

The numerical treatment of Eq. (1) is a quite
standard Galerkin finite element formulation. Con-
sidering a discrete spaceVh, which satisfies the
Dirichlet conditions, one looks for a pressure field
ph ∈ Vh satisfying∫

Ω

[
h3

(
∂ph

∂x
∂qh

∂x + ∂ph

∂z
∂qh

∂z

)
+ h∂qh

∂x +

1
ε |p

−
h |phqh

]
dx dz = 0 ∀ qh ∈ Vh

(8)
wherep−h = min{ph, 0}, and ε is the penaliza-
tion parameter, that we take as10−10. The term
involving ε models cavitation phenomena. In the

limit ε → 0 it tends to satisfy the Elrod condi-
tionsp = ∂p

∂n = 0 at the boundary of the cavitation
zone. The penalization is quadratic so as to ren-
der the left-hand side of (8) continuously differen-
tiable with respect toph, which is convenient for
the Newton-Raphson treatment of the nonlinearity.
Though cavitation does not occur in the optimized
shapes found in the cases reported here, it is im-
portant to include it because along the optimization
process the evolutionary algorithms may propose
shapes that produce cavitation.

Optimization - Genetic algorithm

Code GENESIS Version 5.0 of J. Grefenstette
(http://www.aic.nrl.navy.mil/galist/src/#C)
was used as evolutionary algorithm in this study.
A brief overview of the code is as follows:

Let f : Rn → R be the objective function, and
(X1, X2, ..., Xn) its arguments (ann-vector). The
algorithm works on a population (initially random)

P = {(a1, a2, ..., an), (b1, b2, ..., bn), ...} (9)

making it evolve as shown in the diagram (see
Fig. 3). Notice the classical steps in genetic
algorithms[4]:

Mutation

Evaluation

Crossover

Selection

Initial Population

Figure 3: Flow chart of the genetic algorithm.
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• Evaluation: Compute the objective function
f . This is the most time-consuming step in
our case since it involves a non-linear finite-
element analysis.

• Selection: Randomly choose those individuals
that survive to the next generation, assigning
more probability to those with smallerf .

• Crossover: Randomly exchange genes (bits)
between two individuals. The crossover rate
can be controled.

• Mutation: Randomly invert bits of an individ-
ual. The mutation rate can be controled.

The GENESIS code allows for the mentioned
rates and the population size to be adjusted so as
have a reasonable convergence rate without satura-
tion or instability.

RESULTS AND DISCUSSION

Rayleigh Step - Test case

As a first application a case with known optimum
was chosen: The so-called Rayleigh step [5]. In
this problem the objective function is the load ca-
pacity. The problem reads:

“Find h∗(x), h∗(x) ≥ 1 ∀ x ∈ [0, 1] such
that

W [h∗] ≥ W [h], ∀ h ′′ (10)

whereW [h] denotes the integral in (5) whenp is
the solution of (1). The exact optimum is given by
(see Fig. 4):

 h(x) = 1 +
√

3
2 if x ∈ [0, 1+2

√
3

9 ]

h(x) = 1 elsewhere
(11)

The code GENESIS was used in three differ-
ent ways. Notice that in this “validation” problem
there are no dimples, we are simply optimizing the
shapeh(x) in the set of piecewise constants.

In Case 1the domain[0, 1] was divided into100
subregions, the value ofh in each subregion being a
state variable. The variation range for each variable
was set to be the interval[1, 2].

In Case 2the subdivision was the same, but the
first 65 variables were assigned the range[1.5, 2],
the following 10 variables the range[1, 2] and the
remaining 25 variables the range[1, 1.5].

Figure 4: Non-dimensional Rayleigh step.

Finally, in Case 3it was assumed that the pro-
file had stepped shape. The state variables were,
thus, the film thickness on the left of the step,hleft,
the film thickness on the right,hright, and the dis-
continuity location,D.

The results from the first two cases after 30,000
evaluations of the objective function can be seen in
Fig. 5, compared to the exact optimum. Results
from Case 3 can be observed in Table 1, as a func-
tion of the number of evaluations. The load value
obtained forCase 1, corresponding to the shape
shown in Fig. 5, is0.9789 of the exact optimum,
while that of Case 2is 0.9921 of the exact opti-
mum. In these cases a population size of50 indi-
viduals was taken.
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Figure 5: Results of the GENESIS code compared
to the optimal Rayleigh step. Left:Case 1, Right:
Case 2.

The mutation and crossover rates used in the
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calculations were0.001 and0.6 respectively.

Table 1: Results of the GENESIS code compared
to the exact ones, indicating the number of evalua-
tions (Case 3).

Parameter hleft hright D
Exact 1.8660 1 0.7182

100 Eval. 1.8756 1.00044 0.7029
500 Eval. 1.8662 1.00048 0.7029
4000 Eval. 1.8662 1.00039 0.7154
10000 Eval. 1.8662 1 0.7174

The above results show that in general the ge-
netic algorithm leads to “rough” shapes, especially
in regions whereh is much greater than one. The
lubrication equation is not very sensitive to changes
in the film thickness at regions where this thick-
ness is large. Since the “rough” shapes have loads
very close to the optimal one, no driving force ex-
ists for smoothing out the shape. Of course, if
the algorithm is allowed to proceed indefinitely,
the exact shape is eventually attained. ForCase
2 above this happens after 200,000 function eval-
uations, approximately, and only then the obtained
shape is “smooth”. It could be interesting to de-
sign a smoothing procedure specific for partially-
optimized lubrication shapes. It has also been
shown that adding information, as is expected, nar-
rows the state space and allows the algorithm to get
close to the optimum in fewer generations.

Another interesting point is the algorithm’s be-
havior as a function of the number of state vari-
ables. In Table 2 we show the best load value (rel-
ative to the optimal one) as attained after 30,000
evaluations of the cost function. Compare the
results with different numbers of state variables
Nvar = 50, 100 and200. It is clear that the fewer
the state variables, the fewer the number of itera-
tions to get to within some given tolerance from the
optimum. In all three cases of Table 2 the ranges
of the variables were set according toCase 2de-
scribed above.

Finally, let us briefly comment about algorith-
mic parameters. The GENESIS code has default
values for the crossover and mutation rate con-
stants. Varying any of these constants does not
have an impact on the convergence behavior of the
algorithm. An example is shown in Figs. 6-8, in
which the mutation rate constant is varied keeping
the crossover rate constant fixed. It is observed that

Table 2: Relative Load Capacity obtained with the
GENESIS code using50, 100 and200 variables to
define the film thicknessh.

Nvar Relative Load Capacity
50 0.9991
100 0.9921
200 0.9629

increasing the mutation rate constant by an order of
magnitude does not affect the convergence behav-
ior of the algorithm significantly. Only after setting
the constant to 100 times the default value (Fig. 8)
the mutation inhibits convergence.
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Figure 6: History of the objective function along
algorithmic iterations (relative to the exact opti-
mum). The mutation rate constant is set to the de-
fault value of the GENESIS code, 0.001. The tics
in the vertical axis have a spacing of 0.1.
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Figure 7: History of the objective function along
algorithmic iterations (relative to the exact opti-
mum). The mutation rate constant is set to 0.01.
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Figure 8: History of the objective function along
algorithmic iterations (relative to the exact opti-
mum). The mutation rate constant is set to 0.1, a
value that is too high to attain convergence.

TEXTURED SLIDERS

Going now to the technological problem of tex-
ture design in the slider configuration (Fig. 1),
in this case the objective function isf = F , the
friction force, while the state variables{Xj} are
texture-shape coefficients.

Infinite width case

We consider a square array of dimples, pe-
riodic in the width (z) direction. We first con-
ducted a sensitivity analysis in order to narrow the
search space, studying the variations of the friction
and of the minimal spacingaround the untextured
state(hpo = 0 everywhere) with respect to dimple
depth.

Let hI
po denote the value ofhpo for the I-th

group of dimples. Since all other input data are
fixed, the solution of the problem (i.e., the pres-
sure field, the excentricity, the minimal film thick-
ness, the friction force, etc.) depends just on
{hI

po}I=1,...,Ng
. We can thus calculate derivatives

of any quantity, such as for example the friction
forceF , by numerical differentiation, that is

∂F
∂hI

po

(
h

1

po, ..., h
I

po, ...
)

=

F
(
h
1
po,...,h

I

po+δ,...
)
−F

(
h
1
po,...,h

I

po,...
)

δ +O(δ)
(12)

Whether it is convenient or not to carve dim-
ples in some region of the bearing results from
the derivative ofF andhmin with respect tohJ

po.
These derivatives are shown in Fig. 9. Based on

them, we consider the following dimple-depth dis-
tribution:
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Figure 9: Friction Force and Minimum Film Thick-
ness Derivatives along the slider.

hJ
po

{
6= 0 if ∂F

∂hJ
po

(0) < 0 and ∂hmin
∂hJ

po
(0) > 0

= 0 in any other case
(13)

so as to allow dimples only whereF is expected to
decrease whilehmin is expected to increase.

The dimple width is set to1/100, and the do-
main is divided intoNg = 20 subregions, so
that each subregion contains a group of5 dimples.
From criterion (13) the search space is narrowed to
groups12 to 17. In these groups we set as variables
the dimple depthhpo, width as, and the steepness
parameterk, within the ranges

hpo ∈ [0, 1.4] - as ∈ [0.0008, 0.0025] - k ∈ [2.5, 5]

The total number of variables is thus 18.
The evolution of the friction and ofhmin along

the evolution process is shown in Fig. 10 for a non-
dimensional applied load of 0.06. Notice that the
results are shown relative to the smooth case. A
significant improvement of 4 % is obtained. More-
over, this improvement comes with a 2 % increase
in the film thickness, which is important in terms
of wear. The texture corresponding to the best in-
dividual found can be seen in Fig. 11. Also shown
in the figure is the optimized shape corresponding
to a smaller applied load,W = 0.006. It is clear
that the optimized textures strongly depend on the
operating conditions of the device.

Finite width case

In this case we simulate half the width of the
slider because of the symmetry. The cell width
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Figure 10: Relative Friction Force and Minimum
Film Thickness. Evolution along the optimization
process. Notice that a 4% decrease in Friction, to-
gether with a 2% increase in Minimum Film Thick-
ness, is attained.

Figure 11: Optimized textures for two different
non-dimensional loads: 0.06 (top) and 0.006 (bot-
tom).

adopted is1
24 , so that the maximum number of dim-

ples is288 = 24×12. Dimples are only allowed in
the central portion of the slider (see Fig. 12), since
from the previous paragraph we know that this por-
tion is the one in which dimples can be beneficial.

In Fig. 13 we illustrate the pressure field cor-
responding to a uniform dimple depth ofhp =
0.5. The dimples were divided into 35 groups of
2 × 2 dimples each. Two free parameters were
assigned to each group of dimples, the depth and
the size, with the ranges:hpo ∈ [0, 1.3] - as ∈
[0.0025, 0.007].

The total number of parameters is thus 70.
Again the genetic algorithm found a design with
a 4.7 % reduction in friction force. The best tex-
ture found after3000 evaluations of the objective
function is shown in Fig. 14.

The result after18000 evaluations is given in
Figs. 15 and 16. The reduction in friction force cor-

Region with Dimples

z = B / 2

x = 0 x = L / 2
z = 0

Figure 12: Scheme showing the region in which
dimples are introduced in the finite-width case.

Figure 13: Pressure distribution when a uniform
texture is introduced in the region indicated in Fig.
12

Figure 14: A 3D view of depth distribution of the
optimized texture obtained after3000 evaluations
of the objective function. The maximum depth is
1.292, the minimum one is 0.085.

responding to this pseudo-optimal texture is5.2 %.

CONCLUSIONS

The recent development of advanced surface tex-
turing techniques, such as laser ablation, chemical
etching, etc., opens the possibility of “engineered
surfaces” for lubrication devices [2, 3]. There ex-
ists significant activity in this direction, since im-
portant gain can be achieved in terms of friction,
wear and lifetime extension.

It should not however be believed that some
magical texture exists that is optimal no matter
what the load and velocity of the device is. For
each specific working condition there exists a spe-
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Figure 15: Two 3D views of depth distribution of
the optimized texture obtained after18000 eval-
uations of the objective function. The maximum
depth is 1.294, the minimum one is 0.0025.

Figure 16: Optimized texture with the depth shown
by means of color zones. The maximum depth
is 1.294 (brighter), the minimum one is 0.0025
(darker).

cific texture that improves the performance, but it
depends on the load and velocity. Optimal design is
necessary to identify the surface shape that is best
suited for each device. It is thus appropriate to as-
sess different optimization tools in this problem.

In this article we have focused on evolutionary
algorithms, which have the potential of identifying
global optima, and the results have shown that quite
standard genetic procedures work rather well for
the problem under study. Further investigation is
however required since the cases considered do not
involve crucial phenomena such as massive cavita-
tion and viscous heating.

Notice, to conclude, that we have assumed
throughout this analysis that the Reynolds approx-
imation holds. This requires that the length scales
in the sliding direction are much greater than the

dimple depth. If the dimple length is comparable
to its depth, the Navier-Stokes equations need to
be solved to calculate the effect of the dimples and
eventually optimize the design. This is the subject
of ongoing research.
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